Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Int J Pharm Pharm Sci ; 2019 Oct; 11(10): 47-63
Article | IMSEAR | ID: sea-205963

ABSTRACT

Objective: The study was designed to prepare Nano-sponge formulation loaded with nifedipine. Studying parameters which affecting the formulas in addition to pharmacokinetics and toxicity tests. Methods: Nine Nano-sponge formulations were prepared by the solvent evaporation technique. Different ratios of polymer ethylcellulose, CO-polymers β-cyclodextrin and hydroxypropyl β-cyclodextrin in addition to solubilizing agent polyvinyl alcohol were used. Thermal analysis, X-ray powder diffraction (XRPD), shape and surface morphology, particle size, %production yield, %porosity, % swelling, and % drug entrapment efficiency of Nano-sponge were examined. Release kinetic also studied beside comparison of pharmacokinetic parameters of the optimum choice formula and marketed one in addition to Toxicological consideration. Results: Particle size in the range of 119.1 nm to 529 nm which were increased due to the increase in the concentration of polymer to the drug. Nano-sponge revealed porous, spherical nature. Increased in the drug/polymer molar ratios (1:1 to 1:3) may increase their % production yield ranged from 62.1% to 92.4%. The drug content of different formulations was in the range of 77.9% to 94.7%, and entrapment efficiency was in the range of 82.72 % to 96.63%. Drug released in controlled sustained pattern and followed Higuchi, s diffusion mechanism. Pharmacokinetic parameters of optimized formula showed significant higher maximum plasma drug concentration, area under plasma concentration-time curve, volume of distribution and mean residence time. Nano-sponge loaded drug proved biological safety at low concentrations. Conclusion: Nano-sponge drug delivery system has showed small Nano size, porous with controlled drug release and significant-high plasma drug concentration that improved solubility, drug bioavailability and proved safety.

2.
Int J Pharm Pharm Sci ; 2019 Jul; 11(7): 14-27
Article | IMSEAR | ID: sea-205936

ABSTRACT

Objective: The evolution of antimicrobial resistance is a universal obstacle that necessities the innovation of more effective and safe antimicrobial alternatives with synergistic properties. The purpose of this study was to investigate the possible improvement of cephalexin antimicrobial treatments by loading into chitosan-based nanoparticles, then evaluate their antibacterial and antibiofilm activities as well as determination of its cytotoxicity. Methods: Chitosan nanoparticles (CSNPs) were prepared by ionic gelation method. Parameters were studied to optimize the particle size of CSNPs including pH, stirring rate, homogenization and ultra-sonication time. Size was measured by transmission electron microscope (TEM) and Zeta sizer, morphology seen by scanning electron microscope (SEM). Entrapment efficiency, drug loading and drug content were calculated. Stability of both plain and loaded chitosan Nano-carriers, Drug release and Kinetics also compatibilities were studied. Antimicrobial activity of CSNPs and cephalexin loaded CSNPs were evaluated against 4 Gram-positive and 4 Gram-negative standard and clinical isolates by microdilution method, also assessment of antibiofilm activity of both formulas was investigated against two biofilm producers clinical isolates by tube assay in addition to determination of their cytotoxicity by MTT(3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results: Chitosan nanoparticles and its loaded antibiotics proved compatible combination with small Zeta size, suitable Zeta potential, maximum EE% and drug-loading capacity, sustained controlled release properties followed diffusion kinetic model and six month stability studies. Cephalexin loaded CSNPs showed better antimicrobial activity than plain CSNPs. Synergistic effects were found against S. aureus (ATCC 25923), B. subtilis (ATCC 9372), S. epidermidis, E. faecalis, P. aeruginosa (ATCC 29853) in addition to two carbapenem resistant isolates k. pneumoniae and E. coli. Also cephalexin loaded CSNPs exhibited antibiofilm activity against E. faecalis clinical isolate. Even though, cephalexin loaded CSNPs exhibited significant antibacterial activity, it showed less toxicity against mammalian cells, it had IC50 equal to 231.893 and did not exhibit any cytotoxicity against the WI-38 fibroblast cells at concentration 23.4 µg/ml. Conclusion: Cephalexin loaded CSNPs possessed good stability and sustained release effect in addition to its antimicrobial, antibiofilm activities and reduced cytotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL